Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

[Relationship between retention PM2.5 and leaf surface AFM character of six greening trees during autumn in Beijing West Mountain.]

Identifieur interne : 001580 ( Main/Exploration ); précédent : 001579; suivant : 001581

[Relationship between retention PM2.5 and leaf surface AFM character of six greening trees during autumn in Beijing West Mountain.]

Auteurs : Bo Chen [République populaire de Chine] ; Hai Long Liu [République populaire de Chine] ; Dong Bo Zhao [République populaire de Chine] ; Peng Fei Chen [République populaire de Chine] ; Shao Wei Lu [République populaire de Chine] ; Shao Ning Li [République populaire de Chine]

Source :

RBID : pubmed:29726182

Descripteurs français

English descriptors

Abstract

This study investigated PM2.5 adsorption by leaves of six tree species (Pinus bungeana, Pinus tabuliformis, Salix babylonica, Acer mono, Ginkgo biloba, Populus davidiana) in the West Mountain of Beijing. An aerosol generator was used for quantitative determination of PM2.5 adsorption. Atomic force microscopy (AFM) was used to determine micro morphology characteristics on the leaf surface, including roughness parameters and the PM2.5 absorption mechanism of tree leaves. The results showed that the PM2.5 adsorption capacity per unit leaf area was as follows: P. bungeana (2.44±0.22 μg·cm-2) > P. tabuliformis (2.40±0.23 μg·cm-2) > S. babylonica (1.62±0.09 μg·cm-2) > A. mono (1.23±0.01 μg·cm-2) > G. biloba (1.00±0.07 μg·cm-2) > P. davi-diana (0.97±0.03 μg·cm-2). In autumn, PM2.5 adsorption capacity per unit leaf area was as follows: November (2.33±0.43 μg·cm-2) > October (1.62±0.64 μg·cm-2) > September (1.51±0.50 μg·cm-2). The leaves of P. bungeana and P. tabuliformis were rugged with many recesses and protrusions, large relative height difference, and high roughness, and their absorption ability of PM2.5 was strong. The leaves of S. babylonica and A. mono had folded leaf lamina and were covered by fine hairs, and their roughness was relatively high, with many protrusions and fillisters on the leaf surface. Since G. biloba and P. davidiana had smooth leaves, mostly oblong stomata and low roughness, their PM2.5 absorption ability was weaker. The ranking of average roughness on the ada-xial and abaxial side of the leaves was as follows: P. bungeana (149.91±16.38 nm) > P. tabuliformis (124.47±10.52 nm) > S. babylonica (98.85±5.36 nm) > A. mono (93.74±21.75 nm) > G. biloba (80.84±0.88 nm) > P. davidiana (67.72±8.66 nm). This accorded with PM2.5 adsorption per unit leaf area, and leaf roughness had a significant positive correlation with PM2.5 adsorption amount per unit leaf area as well (R2=0.9498). To improve the environmental effects of city vegetation, tree species with leaf surface morphology that facilitates absorption of PM2.5 and other particles should be selected.

DOI: 10.13287/j.1001-9332.201603.026
PubMed: 29726182


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">[Relationship between retention PM
<sub>2.5</sub>
and leaf surface AFM character of six greening trees during autumn in Beijing West Mountain.]</title>
<author>
<name sortKey="Chen, Bo" sort="Chen, Bo" uniqKey="Chen B" first="Bo" last="Chen">Bo Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forestry and Pomology Institute, Beijing Academy of Agriculture and Forestry Sciences/Horticulture Ecological Environment Function Promoted Collaborative Innovation Center, Beijing 100093, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Forestry and Pomology Institute, Beijing Academy of Agriculture and Forestry Sciences/Horticulture Ecological Environment Function Promoted Collaborative Innovation Center, Beijing 100093</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Hai Long" sort="Liu, Hai Long" uniqKey="Liu H" first="Hai Long" last="Liu">Hai Long Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Xishan Experimental Forest Farm of Beijing, Beijing 100093, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Xishan Experimental Forest Farm of Beijing, Beijing 100093</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Dong Bo" sort="Zhao, Dong Bo" uniqKey="Zhao D" first="Dong Bo" last="Zhao">Dong Bo Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Xishan Experimental Forest Farm of Beijing, Beijing 100093, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Xishan Experimental Forest Farm of Beijing, Beijing 100093</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Peng Fei" sort="Chen, Peng Fei" uniqKey="Chen P" first="Peng Fei" last="Chen">Peng Fei Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Xishan Experimental Forest Farm of Beijing, Beijing 100093, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Xishan Experimental Forest Farm of Beijing, Beijing 100093</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lu, Shao Wei" sort="Lu, Shao Wei" uniqKey="Lu S" first="Shao Wei" last="Lu">Shao Wei Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forestry and Pomology Institute, Beijing Academy of Agriculture and Forestry Sciences/Horticulture Ecological Environment Function Promoted Collaborative Innovation Center, Beijing 100093, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Forestry and Pomology Institute, Beijing Academy of Agriculture and Forestry Sciences/Horticulture Ecological Environment Function Promoted Collaborative Innovation Center, Beijing 100093</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Shao Ning" sort="Li, Shao Ning" uniqKey="Li S" first="Shao Ning" last="Li">Shao Ning Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forestry and Pomology Institute, Beijing Academy of Agriculture and Forestry Sciences/Horticulture Ecological Environment Function Promoted Collaborative Innovation Center, Beijing 100093, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Forestry and Pomology Institute, Beijing Academy of Agriculture and Forestry Sciences/Horticulture Ecological Environment Function Promoted Collaborative Innovation Center, Beijing 100093</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:29726182</idno>
<idno type="pmid">29726182</idno>
<idno type="doi">10.13287/j.1001-9332.201603.026</idno>
<idno type="wicri:Area/Main/Corpus">001895</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001895</idno>
<idno type="wicri:Area/Main/Curation">001895</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001895</idno>
<idno type="wicri:Area/Main/Exploration">001895</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">[Relationship between retention PM
<sub>2.5</sub>
and leaf surface AFM character of six greening trees during autumn in Beijing West Mountain.]</title>
<author>
<name sortKey="Chen, Bo" sort="Chen, Bo" uniqKey="Chen B" first="Bo" last="Chen">Bo Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forestry and Pomology Institute, Beijing Academy of Agriculture and Forestry Sciences/Horticulture Ecological Environment Function Promoted Collaborative Innovation Center, Beijing 100093, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Forestry and Pomology Institute, Beijing Academy of Agriculture and Forestry Sciences/Horticulture Ecological Environment Function Promoted Collaborative Innovation Center, Beijing 100093</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Hai Long" sort="Liu, Hai Long" uniqKey="Liu H" first="Hai Long" last="Liu">Hai Long Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Xishan Experimental Forest Farm of Beijing, Beijing 100093, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Xishan Experimental Forest Farm of Beijing, Beijing 100093</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Dong Bo" sort="Zhao, Dong Bo" uniqKey="Zhao D" first="Dong Bo" last="Zhao">Dong Bo Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Xishan Experimental Forest Farm of Beijing, Beijing 100093, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Xishan Experimental Forest Farm of Beijing, Beijing 100093</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Peng Fei" sort="Chen, Peng Fei" uniqKey="Chen P" first="Peng Fei" last="Chen">Peng Fei Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Xishan Experimental Forest Farm of Beijing, Beijing 100093, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Xishan Experimental Forest Farm of Beijing, Beijing 100093</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lu, Shao Wei" sort="Lu, Shao Wei" uniqKey="Lu S" first="Shao Wei" last="Lu">Shao Wei Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forestry and Pomology Institute, Beijing Academy of Agriculture and Forestry Sciences/Horticulture Ecological Environment Function Promoted Collaborative Innovation Center, Beijing 100093, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Forestry and Pomology Institute, Beijing Academy of Agriculture and Forestry Sciences/Horticulture Ecological Environment Function Promoted Collaborative Innovation Center, Beijing 100093</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Shao Ning" sort="Li, Shao Ning" uniqKey="Li S" first="Shao Ning" last="Li">Shao Ning Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forestry and Pomology Institute, Beijing Academy of Agriculture and Forestry Sciences/Horticulture Ecological Environment Function Promoted Collaborative Innovation Center, Beijing 100093, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Forestry and Pomology Institute, Beijing Academy of Agriculture and Forestry Sciences/Horticulture Ecological Environment Function Promoted Collaborative Innovation Center, Beijing 100093</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Ying yong sheng tai xue bao = The journal of applied ecology</title>
<idno type="ISSN">1001-9332</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acer (MeSH)</term>
<term>Adsorption (MeSH)</term>
<term>Air Pollutants (MeSH)</term>
<term>Beijing (MeSH)</term>
<term>Cities (MeSH)</term>
<term>Environmental Monitoring (MeSH)</term>
<term>Ginkgo biloba (MeSH)</term>
<term>Particulate Matter (MeSH)</term>
<term>Pinus (MeSH)</term>
<term>Plant Leaves (physiology)</term>
<term>Populus (MeSH)</term>
<term>Salix (MeSH)</term>
<term>Seasons (MeSH)</term>
<term>Trees (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acer (MeSH)</term>
<term>Adsorption (MeSH)</term>
<term>Arbres (physiologie)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Ginkgo biloba (MeSH)</term>
<term>Matière particulaire (MeSH)</term>
<term>Pinus (MeSH)</term>
<term>Polluants atmosphériques (MeSH)</term>
<term>Populus (MeSH)</term>
<term>Pékin (MeSH)</term>
<term>Saisons (MeSH)</term>
<term>Salix (MeSH)</term>
<term>Surveillance de l'environnement (MeSH)</term>
<term>Villes (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Air Pollutants</term>
<term>Particulate Matter</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arbres</term>
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Leaves</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Acer</term>
<term>Adsorption</term>
<term>Beijing</term>
<term>Cities</term>
<term>Environmental Monitoring</term>
<term>Ginkgo biloba</term>
<term>Pinus</term>
<term>Populus</term>
<term>Salix</term>
<term>Seasons</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acer</term>
<term>Adsorption</term>
<term>Ginkgo biloba</term>
<term>Matière particulaire</term>
<term>Pinus</term>
<term>Polluants atmosphériques</term>
<term>Populus</term>
<term>Pékin</term>
<term>Saisons</term>
<term>Salix</term>
<term>Surveillance de l'environnement</term>
<term>Villes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This study investigated PM
<sub>2.5</sub>
adsorption by leaves of six tree species (Pinus bungeana, Pinus tabuliformis, Salix babylonica, Acer mono, Ginkgo biloba, Populus davidiana) in the West Mountain of Beijing. An aerosol generator was used for quantitative determination of PM
<sub>2.5</sub>
adsorption. Atomic force microscopy (AFM) was used to determine micro morphology characteristics on the leaf surface, including roughness parameters and the PM
<sub>2.5</sub>
absorption mechanism of tree leaves. The results showed that the PM
<sub>2.5</sub>
adsorption capacity per unit leaf area was as follows: P. bungeana (2.44±0.22 μg·cm
<sup>-2</sup>
) > P. tabuliformis (2.40±0.23 μg·cm
<sup>-2</sup>
) > S. babylonica (1.62±0.09 μg·cm
<sup>-2</sup>
) > A. mono (1.23±0.01 μg·cm
<sup>-2</sup>
) > G. biloba (1.00±0.07 μg·cm
<sup>-2</sup>
) > P. davi-diana (0.97±0.03 μg·cm
<sup>-2</sup>
). In autumn, PM
<sub>2.5</sub>
adsorption capacity per unit leaf area was as follows: November (2.33±0.43 μg·cm
<sup>-2</sup>
) > October (1.62±0.64 μg·cm
<sup>-2</sup>
) > September (1.51±0.50 μg·cm
<sup>-2</sup>
). The leaves of P. bungeana and P. tabuliformis were rugged with many recesses and protrusions, large relative height difference, and high roughness, and their absorption ability of PM
<sub>2.5</sub>
was strong. The leaves of S. babylonica and A. mono had folded leaf lamina and were covered by fine hairs, and their roughness was relatively high, with many protrusions and fillisters on the leaf surface. Since G. biloba and P. davidiana had smooth leaves, mostly oblong stomata and low roughness, their PM
<sub>2.5</sub>
absorption ability was weaker. The ranking of average roughness on the ada-xial and abaxial side of the leaves was as follows: P. bungeana (149.91±16.38 nm) > P. tabuliformis (124.47±10.52 nm) > S. babylonica (98.85±5.36 nm) > A. mono (93.74±21.75 nm) > G. biloba (80.84±0.88 nm) > P. davidiana (67.72±8.66 nm). This accorded with PM
<sub>2.5</sub>
adsorption per unit leaf area, and leaf roughness had a significant positive correlation with PM
<sub>2.5</sub>
adsorption amount per unit leaf area as well (R
<sup>2</sup>
=0.9498). To improve the environmental effects of city vegetation, tree species with leaf surface morphology that facilitates absorption of PM
<sub>2.5</sub>
and other particles should be selected.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">29726182</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>06</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1001-9332</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>27</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2016</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Ying yong sheng tai xue bao = The journal of applied ecology</Title>
<ISOAbbreviation>Ying Yong Sheng Tai Xue Bao</ISOAbbreviation>
</Journal>
<ArticleTitle>[Relationship between retention PM
<sub>2.5</sub>
and leaf surface AFM character of six greening trees during autumn in Beijing West Mountain.]</ArticleTitle>
<Pagination>
<MedlinePgn>777-784</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.13287/j.1001-9332.201603.026</ELocationID>
<Abstract>
<AbstractText>This study investigated PM
<sub>2.5</sub>
adsorption by leaves of six tree species (Pinus bungeana, Pinus tabuliformis, Salix babylonica, Acer mono, Ginkgo biloba, Populus davidiana) in the West Mountain of Beijing. An aerosol generator was used for quantitative determination of PM
<sub>2.5</sub>
adsorption. Atomic force microscopy (AFM) was used to determine micro morphology characteristics on the leaf surface, including roughness parameters and the PM
<sub>2.5</sub>
absorption mechanism of tree leaves. The results showed that the PM
<sub>2.5</sub>
adsorption capacity per unit leaf area was as follows: P. bungeana (2.44±0.22 μg·cm
<sup>-2</sup>
) > P. tabuliformis (2.40±0.23 μg·cm
<sup>-2</sup>
) > S. babylonica (1.62±0.09 μg·cm
<sup>-2</sup>
) > A. mono (1.23±0.01 μg·cm
<sup>-2</sup>
) > G. biloba (1.00±0.07 μg·cm
<sup>-2</sup>
) > P. davi-diana (0.97±0.03 μg·cm
<sup>-2</sup>
). In autumn, PM
<sub>2.5</sub>
adsorption capacity per unit leaf area was as follows: November (2.33±0.43 μg·cm
<sup>-2</sup>
) > October (1.62±0.64 μg·cm
<sup>-2</sup>
) > September (1.51±0.50 μg·cm
<sup>-2</sup>
). The leaves of P. bungeana and P. tabuliformis were rugged with many recesses and protrusions, large relative height difference, and high roughness, and their absorption ability of PM
<sub>2.5</sub>
was strong. The leaves of S. babylonica and A. mono had folded leaf lamina and were covered by fine hairs, and their roughness was relatively high, with many protrusions and fillisters on the leaf surface. Since G. biloba and P. davidiana had smooth leaves, mostly oblong stomata and low roughness, their PM
<sub>2.5</sub>
absorption ability was weaker. The ranking of average roughness on the ada-xial and abaxial side of the leaves was as follows: P. bungeana (149.91±16.38 nm) > P. tabuliformis (124.47±10.52 nm) > S. babylonica (98.85±5.36 nm) > A. mono (93.74±21.75 nm) > G. biloba (80.84±0.88 nm) > P. davidiana (67.72±8.66 nm). This accorded with PM
<sub>2.5</sub>
adsorption per unit leaf area, and leaf roughness had a significant positive correlation with PM
<sub>2.5</sub>
adsorption amount per unit leaf area as well (R
<sup>2</sup>
=0.9498). To improve the environmental effects of city vegetation, tree species with leaf surface morphology that facilitates absorption of PM
<sub>2.5</sub>
and other particles should be selected.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Bo</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Forestry and Pomology Institute, Beijing Academy of Agriculture and Forestry Sciences/Horticulture Ecological Environment Function Promoted Collaborative Innovation Center, Beijing 100093, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Hai Long</ForeName>
<Initials>HL</Initials>
<AffiliationInfo>
<Affiliation>Xishan Experimental Forest Farm of Beijing, Beijing 100093, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Dong Bo</ForeName>
<Initials>DB</Initials>
<AffiliationInfo>
<Affiliation>Xishan Experimental Forest Farm of Beijing, Beijing 100093, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Peng Fei</ForeName>
<Initials>PF</Initials>
<AffiliationInfo>
<Affiliation>Xishan Experimental Forest Farm of Beijing, Beijing 100093, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Shao Wei</ForeName>
<Initials>SW</Initials>
<AffiliationInfo>
<Affiliation>Forestry and Pomology Institute, Beijing Academy of Agriculture and Forestry Sciences/Horticulture Ecological Environment Function Promoted Collaborative Innovation Center, Beijing 100093, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Shao Ning</ForeName>
<Initials>SN</Initials>
<AffiliationInfo>
<Affiliation>Forestry and Pomology Institute, Beijing Academy of Agriculture and Forestry Sciences/Horticulture Ecological Environment Function Promoted Collaborative Innovation Center, Beijing 100093, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>chi</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<VernacularTitle>北京西山绿化树种秋季滞纳PM
<sub>2.5</sub>
能力及其与叶表面AFM特征的关系.</VernacularTitle>
</Article>
<MedlineJournalInfo>
<Country>China</Country>
<MedlineTA>Ying Yong Sheng Tai Xue Bao</MedlineTA>
<NlmUniqueID>9425159</NlmUniqueID>
<ISSNLinking>1001-9332</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000393">Air Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D052638">Particulate Matter</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D031002" MajorTopicYN="N">Acer</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000327" MajorTopicYN="N">Adsorption</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000393" MajorTopicYN="N">Air Pollutants</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000068476" MajorTopicYN="N">Beijing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002947" MajorTopicYN="N">Cities</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004784" MajorTopicYN="Y">Environmental Monitoring</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020441" MajorTopicYN="N">Ginkgo biloba</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052638" MajorTopicYN="Y">Particulate Matter</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028223" MajorTopicYN="N">Pinus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032108" MajorTopicYN="N">Salix</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012621" MajorTopicYN="N">Seasons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherAbstract Type="Publisher" Language="chi">
<AbstractText>以北京西山6种绿化树种白皮松、油松、柳树、五角枫、银杏、山杨为对象,应用气溶胶再发生器对植物叶片秋季PM
<sub>2.5</sub>
吸附量进行定量研究,同时应用原子力显微镜(AFM)观察叶表面微形态特征,分析了叶表面粗糙度等参数,阐释了各树种叶片吸附PM
<sub>2.5</sub>
的机制.结果表明: 不同树种单位叶面积PM
<sub>2.5</sub>
吸附量排序为白皮松(2.44±0.22 μg·cm
<sup>-2</sup>
)>油松(2.40±0.23 μg·cm
<sup>-2</sup>
)>柳树(1.62±0.09 μg·cm
<sup>-2</sup>
)>五角枫(1.23±0.01 μg·cm
<sup>-2</sup>
)>银杏(1.00±0.07 μg·cm
<sup>-2</sup>
)>山杨(0.97±0.03 μg·cm
<sup>-2</sup>
);从秋季不同月份来看,不同树种单位叶面积PM
<sub>2.5</sub>
吸附量表现为11月(2.33±0.43 μg·cm
<sup>-2</sup>
)>10月(1.62±0.64 μg·cm
<sup>-2</sup>
)>9月(1.51±0.50 μg·cm
<sup>-2</sup>
).白皮松和油松有大量凹陷和突起,相对高差较大,粗糙度较大,吸滞PM
<sub>2.5</sub>
能力强;柳树和五角枫叶片有褶皱,粗糙度相对较高,分布有大量的突起和凹陷,吸滞PM
<sub>2.5</sub>
能力居中;银杏和山杨因其叶表面平滑、气孔多为长圆形,粗糙度较小,吸滞PM
<sub>2.5</sub>
能力较弱.不同树种正背面粗糙度平均值为白皮松(149.91±16.38 nm)>油松(124.47±10.52 nm)>柳树(98.85±5.36 nm)>五角枫(93.74±21.75 nm)>银杏(80.84±0.88 nm)>山杨(67.72±8.66 nm),这与不同树种单位叶面积PM
<sub>2.5</sub>
吸附量排序完全一致,叶片粗糙度与单位叶面积PM
<sub>2.5</sub>
吸附量呈显著正相关(
<i>R</i>
<sup>2</sup>
=0.9498).为提高城市植被的环境效应,可选择叶表面形态有利于吸滞PM
<sub>2.5</sub>
等颗粒物的树种.</AbstractText>
</OtherAbstract>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">PM 2.5 </Keyword>
<Keyword MajorTopicYN="N">adsorption ability</Keyword>
<Keyword MajorTopicYN="N">atomic force microscopy (AFM)</Keyword>
<Keyword MajorTopicYN="N">landscaping trees</Keyword>
<Keyword MajorTopicYN="N">leaf surface morphology</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>3</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>3</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29726182</ArticleId>
<ArticleId IdType="doi">10.13287/j.1001-9332.201603.026</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Chen, Bo" sort="Chen, Bo" uniqKey="Chen B" first="Bo" last="Chen">Bo Chen</name>
</noRegion>
<name sortKey="Chen, Peng Fei" sort="Chen, Peng Fei" uniqKey="Chen P" first="Peng Fei" last="Chen">Peng Fei Chen</name>
<name sortKey="Li, Shao Ning" sort="Li, Shao Ning" uniqKey="Li S" first="Shao Ning" last="Li">Shao Ning Li</name>
<name sortKey="Liu, Hai Long" sort="Liu, Hai Long" uniqKey="Liu H" first="Hai Long" last="Liu">Hai Long Liu</name>
<name sortKey="Lu, Shao Wei" sort="Lu, Shao Wei" uniqKey="Lu S" first="Shao Wei" last="Lu">Shao Wei Lu</name>
<name sortKey="Zhao, Dong Bo" sort="Zhao, Dong Bo" uniqKey="Zhao D" first="Dong Bo" last="Zhao">Dong Bo Zhao</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001580 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001580 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29726182
   |texte=   [Relationship between retention PM2.5 and leaf surface AFM character of six greening trees during autumn in Beijing West Mountain.]
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29726182" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020